Bheemanahalli R, Samiappan S, Kodadinne N, McCraine D, Czarnecki J, Ardeshir A.
Moorhead RJ (November 2020). Evaluation of cotton seeding performance at early
growth stage following cover cropping using aerial imagery. ASA-CSSA-SSSA
International Annual Meeting, USA. (Abstract).
Bheemanahalli R, Shrestha A, Kodadinne N, Samiappan S, Czarnecki J, McCraine D
Ardeshir A. Reddy KR, Moorhead RJ (August 2021). Integrated aerial and
destructive methods differentiate plant health of cotton in response to cover
cropping. Mississippi Academy of Sciences. (Abstract)
Eroglu, O., Kurum, M., Boyd, D., and Gurbuz, A., 2019. High Spatio-Temporal
Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks.
Remote Sensing, vol. 11, no. 19, pp.1-32, 2019. DOI:
10.3390/rs11192272
Lei, F., Senyurek, V., Kurum, M., Gurbuz, A., Boyd, D., Moorhead, R., Crow, W.,
and Eroglu, O., 2021. Quasi-Global Machine Learning-based Soil Moisture
Estimates at High Spatio-temporal Scales using CYGNSS and SMAP Observations.
Remote Sensing of Environment, under review.
M. Kurum, M. Farhad, and A. C. Gurbuz, “Integration of Smartphones into Small
Unmanned Aircraft Systems to Sense Water in Soil by Using Reflected GPS
Signals,” IEEE Journal of Selected Topics in Applied Earth Observation and
Remote Sensing, vol. 14, pp. 1048 – 1059, 2021. DOI:
10.1109/JSTARS.2020.3041162
Munyon JW, Bheemanahalli R, Walne CH, Reddy KR (2021) Developing
functional relationships between temperature and cover crop species vegetative
growth and development. Agronomy Journal, 113: 1333-1348.
Samiappan S, Bheemanahalli R, Zhou M, Brooks J, Wubben M (2021). Early
detection of root-knot nematode (Meloidogyne incognita) infestation in cotton
using hyperspectral data. IGARSS. (Peer-reviewed, Proceeding paper).
V. Senyurek, F. Lei, D. R. Boyd, A. Gurbuz, M. Kurum, and R. Moorhead,
“Evaluations of Machine Learning-based CYGNSS Soil Moisture Estimates against
SMAP Observations,” MDPI Remote Sensing, vol.12, no. 12, pp.3503, 2020. DOI:
10.3390/rs12213503
Senyurek, V., Lei, F., Boyd, D., Kurum, M., Gurbuz, A., and Moorhead, R., 2020.
Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS.
Remote Sensing, vol. 12, no. 7, pp.1168, 2020. DOI:
10.3390/rs12071168
Senyurek, V., Lei, F., Boyd, D., Gurbuz, A., Kurum, M., and Moorhead, R., 2020.
Evaluations of a Machine Learning-based CYGNSS Soil Moisture Estimates against
SMAP Observations. Remote Sensing, vol. 12, no. 21, pp.3503, 2020. DOI:
10.3390/rs12213503
Lei, F., Senyurek, V., Kurum, M., Gurbuz, A., Moorhead, R., and Boyd,
D., 2020. Machine-Learning Based Retrieval of Soil Moisture at High
Spatio-Temporal Scales Using CYGNSS and SMAP Observations. IGARSS 2020-2020
IEEE International Geoscience and Remote Sensing Symposium.
Lei, F., Senyurek, V., Kurum, M., Gurbuz, A., Boyd, D., and Moorhead, R., 2020.
A quasi-global machine learning-based CYGNSS soil moisture product at high
spatio-temporal resolution. NASA CYGNSS Virtual Meeting 2020.
Lei, F., Senyurek, V., Kurum, M., Gurbuz, A., Boyd, D., and Moorhead, R., 2021.
Quasi-global GNSS-R Soil Moisture Retrievals at High Spatio-temporal Resolution
from CYGNSS and SMAP. IGARSS 2021-2021 IEEE International Geoscience and
Remote Sensing Symposium.
Senyurek, V., Gurbuz, A., Kurum, M., Lei, F., Boyd, D., and Moorhead, R., 2021.
Spatial and Temporal Interpolation of CYGNSS Soil Moisture Estimations.
IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing
Symposium.