Skip to:

Publication Abstract

Electromyogram in Cigarette Smoking Activity Recognition

Senyurek, V., Belsare, P., Imtiaz, M., Tiffany, S., & Sazonov, E. (2021). Electromyogram in Cigarette Smoking Activity Recognition. Signals. MDPI. 2(1), 87-97. DOI:10.3390/signals2010008.

Abstract

In this study, information from surface electromyogram (sEMG) signals was used to recognize cigarette smoking. The sEMG signals collected from lower arm were used in two different ways: (1) as an individual predictor of smoking activity and (2) as an additional sensor/modality along with the inertial measurement unit (IMU) to augment recognition performance. A convolutional and a recurrent neural network were utilized to recognize smoking-related hand gestures. The model was developed and evaluated with leave-one-subject-out (LOSO) cross-validation on a dataset from 16 subjects who performed ten activities of daily living including smoking. The results show that smoking detection using only sEMG signal achieved an F1-score of 75% in person-independent cross-validation. The combination of sEMG and IMU improved reached the F1-score of 84%, while IMU alone sensor modality was 81%. The study showed that using only sEMG signals would not provide superior cigarette smoking detection performance relative to IMU signals. However, sEMG improved smoking detection results when combined with IMU signals without using an additional device.